

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Proton Nuclear Magnetic Resonance Spectroscopy: Significant Barriers to Rotation About N-N Bonds in 3-Acylaminoquinazolin-4(3H)-One Derivatives

Gamal A. El-hiti^a

^a Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt

To cite this Article El-hiti, Gamal A.(1999) 'Proton Nuclear Magnetic Resonance Spectroscopy: Significant Barriers to Rotation About N-N Bonds in 3-Acylaminoquinazolin-4(3H)-One Derivatives', *Spectroscopy Letters*, 32: 4, 671 — 677

To link to this Article: DOI: 10.1080/00387019909350016

URL: <http://dx.doi.org/10.1080/00387019909350016>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY:
SIGNIFICANT BARRIERS TO ROTATION ABOUT N-N BONDS IN
3-ACYLAMINOQUINAZOLIN-4(3*H*)-ONE DERIVATIVES**

keywords: quinazolin-4(3*H*)-ones, ^1H NMR spectra, hindered rotation, free energy of activation, stereochemical process, chiral axis, orthogonal conformation, coalescence temperatures.

Gamal A. El-Hiti

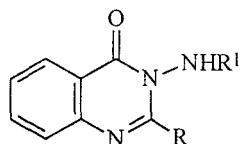
**Department of Chemistry, Faculty of Science,
Tanta University, Tanta,
Egypt**

ABSTRACT

The proton NMR spectra of several 3-acylaminoquinazolin-4(3*H*)-one derivatives have been studied as a function of temperature. The changes, which were found to occur in the spectra at high temperatures, are discussed in terms of hindered rotation about the nitrogen-nitrogen bond. The free energies of activation for the rate-determining stereochemical process were calculated to be as high as (14.7~20.6 Kcal mol $^{-1}$) for hydrazine derivatives.

INTRODUCTION

Surprisingly large barriers have been observed for rotation about P-N bonds in aminophosphines^{1,2}, N-Si bonds in silylated hydrazines³, N-As bonds in aminoarsines¹, and about N-S⁴ and N-O⁵ bonds.


The conformational stereochemistry of several heterocyclic systems and hydrazines and the barriers in them to inversion of nitrogen and rotation about the N-N bond have been reported⁶. Studies by microwave spectroscopy and electron diffraction of hydrazine⁷ and some substituted hydrazines⁸ have shown that the preferred conformation is one with the nitrogen lone pairs gauche to one another. Also, the barriers to inversion of nitrogen in tetrafluorohydrazone⁹ and in cyclic hydrazines¹⁰ have been measured. Barriers to rotation have been reported for di- and tetraacylhydrazines, where both nitrogen atoms are of amide type¹¹, and in hydrazones¹², triazines¹³ and tetrazines¹⁴.

Recently, barrier to rotation was reported for 3-(diacylamino)quinazolin-4(3*H*)-ones¹⁵. We now report on the orthogonal conformation and estimation of free-energy barriers to rotation about the N-N bond in 3-acylaminoquinazolin-4(3*H*)-ones.

RESULTS AND DISCUSSION

During the course of current investigations of the syntheses of quinazolin-4(3*H*)-one derivatives¹⁶, interesting features were observed in the NMR spectra of the products. We have now examined the ¹H NMR spectra of quinazolin-4(3*H*)-one derivatives **1-7** in more detail in order to understand the features better.

HINDERED ROTATION IN QUINAZOLIN-4(3*H*)-ONES

1 R = CH₂C(OH)Ph₂, R¹ = COBu^t

2 R = CH₂SCSNPrⁱ₂, R¹ = COMe

3 R = Et, R¹ = COMe

4 R = Et, R¹ = Me

5 R = Et, R¹ = COPrⁱ

6 R = Prⁱ, R¹ = COBu^t

7 R = Prⁱ, R¹ = COMe

All of the spectra showed a dependence on temperature that indicated significant barriers to rotation about the N-N bonds. In the case of compound **1**, the CH_2 protons at C-2 must be equivalent unless the plane of the aromatic ring is orthogonal to the plane of the pivaloyl amino group, which renders the N-N bond as a chiral axis. At room temperature the corresponding ^1H NMR signal for the CH_2 group in compound **1** appears as two AB doublets ($J_{\text{AB}} = 17$ Hz) in $[^2\text{H}_6]\text{DMSO}$. These two doublets showed a single broadened line at 150 °C, so that a reasonable estimate of the free energy of activation ($\Delta G_{\text{C}}^{\ddagger}$) at the coalescence temperature (T_{C}) could be made by using the formula given in equation 1⁵. Similar calculation were made for the other compounds and the results are shown in Table 1.

$$\Delta G_{\text{C}}^{\ddagger} = 4.57 T_{\text{C}} \left[9.67 + \log \frac{T_{\text{C}}}{(\Delta \nu_{\text{AB}}^2 + 6 J_{\text{AB}}^2)^{1/2}} \right] \quad (1)$$

In the case of compound **2**, the ^1H NMR signal for the CH_2 protons in $[^2\text{H}_6]\text{DMSO}$ consisted of two AB doublets ($J_{\text{AB}} = 15$ Hz). On raising the temperature to 120 °C, the two AB doublets showed significant line-broadening indicative of the onset of equilibration. The ^1H NMR spectrum at -20 °C showed the presence of two diastereoisomers in unequal proportions (1:2), indicating restricted rotation about the N-N bond below room temperature.

The ^1H NMR spectra of compound **3** shows two separate double quartets ($J = 7.0$ and 15.5 Hz) at 20 °C which coalesced to perfect single quartets at 100 °C. Similarly the ^1H NMR spectra of compound **4** show two separate double quartets ($J = 7.4$ and 16.0 Hz) at -50 °C which coalesced to perfect single quartets at 60 °C. In the ^1H NMR spectrum of compound **5** recorded at room temperature the methyl protons of the isopropyl group appear as two separate doublets ($J = 6.9$ Hz) and the CH_2 protons at position 2 appear as two overlapping doublet quartets ($J = 7.5$ and 16.5

TABLE 1

**¹H NMR Parameters and Free-Energy Barriers About the N-N Bond (ΔG^\ddagger_C)
Estimated from Coalescence Temperatures (T_C) for Compounds 1-7^a.**

Comp. No.	Solvent	$\Delta v_{AB}^b(T)$, Hz	J_{AB} , Hz	T_C , °C	ΔG^\ddagger_C at T_C^c
		± 0.5 Hz	± 0.5 Hz	± 2 °C	Kcal mole ⁻¹
1	[² H ₆]DMSO	20 (20)	17.0	150	20.6
2	[² H ₆]DMSO	264 (23)	15.0	120	17.7
3	[² H ₆]DMSO	40 (20)	15.5	100	17.9
4	CDCl ₃	180 (-50)	16.0	60	14.7
5	CDCl ₃	16 (20)	16.5	58	16.0
6	CDCl ₃	24 (20)	6.7	63	16.5
7	CDCl ₃	22 (20)	6.7	63	16.5

^a The table refers only to the CH₂ signals (compounds 1-5) or CH signal (compounds 6 and 7) at position 2 of the quinazolinone moiety.

^b At 400 MHz.

^c Errors are difficult to estimate: they are probably less than ± 0.2 Kcal mole⁻¹.

Hz). However, at 58 °C, these signals coalesced to a doublet and a quartet, respectively, which indicates the onset of equilibration *via* rotation about the N-N bond. In the case of compounds 6 and 7, the ¹H NMR spectra showed two doublets ($J = 6.7$ Hz) for the isopropyl methyl protons. On raising the temperature to 63 °C, these two doublets collapsed to a single perfect doublet.

From these results I conclude that this phenomenon results from the orthogonal arrangement of the two ends of the hydrazine system and a high barrier to rotation about the N-N bond. Orthogonal conformations are known to be significantly more stable than their coplanar counterparts for hydrazine derivatives¹⁷.

EXPERIMENTAL

Compounds 1-7 were prepared as previously reported¹⁶. ¹H NMR spectra were recorded on a Bruker spectrometer operating at 400 MHz. Chemical shifts are reported in parts per million relative to tetramethylsilane.

ACKNOWLEDGEMENTS

I thank Professor Keith Smith, professor of organic chemistry, Chemistry Department, University of Wales Swansea, UK, for his valuable discussion and for recording NMR spectra for me. I also thank the Royal Society of Chemistry for an international author grant.

REFERENCES

1. A. H. Cowley, M. J. S. Dewar and W. R. Jackson, *J. Am. Chem. Soc.*, **90**, 4185 (1968).
2. M. P. Simonnin, J. J. Basselier and C. Charrier, *Bull. Soc. Chim. Fr.*, 3544 (1967).
3. J. Scherer and U. Bültjer, *Angew. Chem. Int. Ed.*, **10**, 343 (1971).
4. See for example; M. J. Jacobsen and A. Senning, *Chem. Commun.*, 617 (1967); M. Raban, F. B. Jones, Jr. and G. W. J. Kenney, Jr., *Tetrahedron Lett.*, 5505 (1968); J. M. Lehn and J. Wagnner, *Chem. Commun.*, 1298 (1968).
5. B. J. Price and I. O. Sutherland, *Chem. Commun.*, 1070 (1967); D. L. Griffith and J. D. Roberts, *J. Am. Chem. Soc.*, **87**, 4089 (1965); F. G. Riddell and J. M. Lehn, *Chem. Commun.*, 375 (1966).
6. See for example; L. Pedersen and K. Motokuma, *J. Chem. Phys.*, **46**, 3941 (1967); W. H. Fink, D. C. Pan and L. C. Ailen, *J. Chem. Phys.*, **47**, 895 (1967); A. H. Cowley, W. D. White and M. C. Damasco, *J. Am. Chem. Soc.*, **91**, 1922 (1969); M. S. Gordon, *J. Am. Chem. Soc.*, **91**, 3122 (1969); M. J. S. Dewar and M. Shanshal, *J. Am. Chem. Soc.*, **91**, 3654 (1969).

7. T. Kasuya and T. Kojina, *J. Phys. Soc. Japan.*, **18**, 364 (1963).
8. W. H. Beamer, *J. Am. Chem. Soc.*, **70**, 2979 (1948); L. S. Bartell and H. K. Higginbotham, *Inorg. Chem.*, **4**, 1346 (1965).
9. C. B. Coulburn, F. A. Johnson and C. Haney, *J. Chem. Phys.*, **43**, 4526 (1965).
10. J. E. Anderson, *J. Am. Chem. Soc.*, **91**, 6374 (1969) and references there in; S. J. Brois, *Tetrahedron Lett.*, 5997 (1968).
11. See for example; B. H. Korsch and N. V. Riggs, *Tetrahedron Lett.*, 5897 (1966); R. M. Moriarty, sr., M. R. Murphy, S. J. Druck and L. May, *Tetrahedron Lett.*, 1603 (1967); M. J. S. Dewar, W. B. Jennings, *J. Am. Chem. Soc.*, **91**, 3655 (1969); J. E. Anderson, D. L. Griffith and J. D. Roberts, *J. Am. Chem. Soc.*, **91**, 6371 (1969); G. J. Bishop, B. J. Price and I. O. Sutherland, *Chem. Commun.*, 672 (1967); J. R. Fletcher and I. O. Sutherland, *Chem. Commun.*, 687 (1970); M. J. S. Dewar and W. B. Jennings, *J. Am. Chem. Soc.*, **95**, 1562 (1973).
12. A. Mannschreck and U. Koelle, *Tetrahedron Lett.*, 863 (1967).
13. N. P. Marullo, C. B. Mayfield and E. M. Wagener, *J. Am. Chem. Soc.*, **90**, 510 (1968).
14. W. M. Tolles, D. W. Moore and W. E. Thun, *J. Am. Chem. Soc.*, **88**, 3476 (1966).
15. R. S. Atkinson, E. Barker, C. J. Price and D. R. Russell, *J. Chem. Soc., Chem. Commun.*, 1159 (1994).
16. K. Smith, G. A. El-Hiti, M. A. Abdo and M. F. Abdel-Megeed, *J. Chem. Soc. Pekin Trans. 1*, 1029 (1995); K. Smith, G. A. El-Hiti, M. F. Abdel-Megeed and M. A. Abdo, *J. Org. Chem.*, **61**, 647 (1996); K. Smith, G. A. El-Hiti, M. F. Abdel-Megeed and M. A. Abdo, *J. Org. Chem.*, **61**, 656 (1996).
17. R. S. Atkinson, in *Comprehensive Organic Chemistry*, ed. D. H. R. Barton

and W. D. Ollis, Pergamon, Oxford, Vol. 2, p. 225 (1978); Y. Shvo in *The Chemistry of the Hydrzo, Azo and Azoxy Groups*, ed. S. Patai, Interscience, New York, part 2 (1975).

Date Received: February 5, 1999

Date Accepted: April 15, 1999